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1. Introduction and motivation

Gauge threshold corrections in D-brane models [1 – 5] have lately attracted renewed interest.

This is mainly due to the fact that they were shown to be equal to one-loop amplitudes

appearing in superpotential couplings generated by euclidean D-brane instantons [6, 7]. As

the gauge threshold corrections generically are not holomorphic functions of the moduli

fields, it is not a priori clear how these couplings can be incorporated in a superpotential.

It can however be shown that a cancellation between the non-holomorphic terms in the

thresholds and terms arising from non-trivial, moduli-dependent Kähler metrics takes place,

thus rendering both the instanton-generated superpotential and the one-loop corrected

gauge kinetic function holomorphic [8 – 10].

Gauge threshold corrections in D6-brane models on toroidal backgrounds have so far

only been computed for so-called bulk branes, which are uncharged under twisted sector

RR-fields [11, 12]. Here the prototype example is the Z2 ×Z2 orbifold with h21 = 3, which

only has eight three-cycles, all of which are bulk cycles. Twisted three-cycles occur for

the Z2 × Z
′
2 orbifold with h21 = 51. This orbifold is a particularly interesting background

for intersecting D6-brane models because the CFT is free and thus explicit calculations

can be performed and, most strikingly, there exist rigid three-cycles. These latter ones

allow one to construct models without phenomenologically undesirable adjoint fields1 and

therefore, in particular, asymptotically free gauge theories [16]. Moreover, these rigid cycles

are important when studying non-perturbative effects because euclidean D2-brane (short

1Similar constructions without these fields can be made in the Type I string [13] or using shift orien-

tifolds [14, 15].
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E2-brane) instantons wrapping these cycles have the zero mode structure needed for a

contribution to the superpotential [17, 18]. This means that, due to the aforementioned

relation between one-loop threshold corrections and the one-loop instanton amplitudes,

the results of this paper are relevant when determining E2-instanton effects in toroidal

intersecting D6-brane models.

In this paper, gauge threshold corrections for D6-brane models on the Z2×Z
′
2 orbifold

with h21 = 51 [16], in which branes can be charged under the twisted RR fields, are

computed. Furthermore, it is shown that also on this background a cancellation between the

non-holomorphic parts of the gauge thresholds and the terms involving the Kähler metrics

occurs in an equation relating the holomorphic gauge kinetic function to the physical

gauge coupling, which is the one calculated in string theory. Since the main body of this

paper is quite technical, let us mention two of our main findings. A summary of all the

results including formulas is given at the end of the paper. We will determine the one-loop

corrections to the holomorphic gauge kinetic function fa for the gauge theory on a brane

stack labelled a. It is interesting to see that on this background, in contradistinction to

the case of the Z2 ×Z2 orbifold with h21 = 3 [8], there are corrections to the gauge kinetic

function from sectors preserving N = 1 supersymmetry.

The gauge threshold corrections computed in this paper allow for a determination of

Kähler metrics of charged matter on the background considered. The metric for the vector-

like bifundamental matter arising from strings stretched between two stacks of branes that

are coincident but differ in their twisted charges can be determined using holomorphy

arguments and yields the expected results. Equivalently, one can determine, up to two

constants, the Kähler metric for the chiral bifundamental matter arising at the intersection

of two stacks of branes, confirming previous findings.

The results of this paper extend those computed in the T-dual picture [9, 10] insofar

as to be valid in a global rather than local model and to include more general twisted

sector charges. In addition, a new contribution to the so-called universal gauge coupling

corrections [19 – 21, 8] is found. Their appearance, together with the holomorphy of the

gauge kinetic function, implies a redefinition of the twisted complex structure moduli at

one loop.

Before we dwell upon the technical details of our computation, let us spell out the

motivation for this project, which is twofold. Firstly, the gauge threshold corrections are

computed. They are important in D-brane models as the gauge couplings on different

branes depend on the volumes of the cycles the branes wrap and therefore are generically

not equal at the compactification or string scale. This poses a potential problem with the

apparent gauge coupling unification seen in the MSSM which could be solved upon taking

the gauge threshold corrections into account.

Secondly, as already mentioned, the present background allows for E2-instanton contri-

butions to the superpotential and is thus a good arena to explicitly study non-perturbative

effects in intersecting D6-brane models. Examples of such effects that are important are

Majorana mass terms for the right-handed neutrinos [18, 22] and the issue of moduli sta-

bilisation [23]. Note in this context that the one-loop corrections determined here lead to

a dependence of the instanton-induced terms on the Kähler moduli, whereas, at tree level,
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Figure 1: Geometry of the two-tori, orbifold fixed points and one-cycles.

they only depend on the complex structure moduli.

2. Setup and partition functions

The setup considered in this paper [16] is an orientifold of an orbifolded torus. The torus

is a factorisable six-torus T 6 = T 2 × T 2 × T 2 and the orbifold group is Z2 × Z
′
2, where

each Z2-factor inverts two two-tori. There are three Z2-twisted sectors with sixteen fixed

points each. The orientifold group is ΩR(−1)FL , where Ω is world-sheet parity, R an

antiholomorphic involution and FL the left-moving spacetime fermion number. The three

two-tori have radii R
(i)
1,2 along the xi,yi-axes, i ∈ {1, 2, 3}. The tori may (βi = 1/2) or

may not (βi = 0) be tilted. There are four orbifold fixed points on each torus, at (0, 0),

(0, R
(i)
2 /2), (R

(i)
1 /2, βiR

(i)
2 /2) and (R

(i)
1 /2, (1+βi)R

(i)
2 /2). They will be labelled fixed points

1,2,3 and 4. All this geometrical data is shown in figure 1 for an untilted and a tilted torus.

(Stacks of) D-branes on this background are described by the wrapping numbers

(ni,mi), the charges under the twisted RR-fields ǫi ∈ {−1, 1}, the position δi ∈ {0, 1}
and the discrete Wilson lines λi ∈ {0, 1}. The brane wraps the one-cycle ni[a′i] + mi[bi] on

the i’th torus, the fundamental one-cycles [a′i] = [ai]+βi[bi] and [bi] are shown in figure 1.

The ǫi satisfy ǫ1 = ǫ2ǫ3. The position is described by the three parameters δi, where δi = 0

if the brane goes through fixed point 1 on the i’th torus and δi = 1 otherwise. An alterna-

tive way to characterise a brane is to use ǫi
kl ∈ {−1, 0, 1}, i ∈ {1, 2, 3}, k, l ∈ {1, 2, 3, 4} [16],

instead of ǫi, δi and λi. ǫi
kl is the charge of the brane under the fixed point labelled kl in

the i’th twisted sector. The ǫi
kl can be determined from ǫi, δi and λi. Note that for each

i only four out of the sixteen ǫi
kl are non-zero. In both these descriptions there is some

redundancy [16]. Rather than fixing some of the ǫi
kl charges to be 1 [16], it will here be

more convenient to choose n1,2 > 0 (or mi positive if ni vanishes).

It is useful to define m̃i = mi+βini, such that a brane wraps the one-cycle ni[ai]+m̃i[bi]

on the i’th torus. The volume of this one-cycle is given by

V i =

√
(ni)2(R

(i)
1 )2 + (m̃i)2(R

(i)
2 )2 (2.1)

– 3 –
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and the tree-level gauge coupling reads:

1

g2
tree

= e−φ10
∏

i

V i =
e−φ4

(T1T2T3)1/2

∏

i

V i =
(SU1U2U3)

1/4

(T1T2T3)1/2

∏

i

V i . (2.2)

Here, φ10(φ4) is the 10(4)-dimensional dilaton in string frame, S is the dilaton in Einstein

frame, Ui are the (real parts of the) complex structure moduli in Einstein frame and

Ti = R
(i)
1 R

(i)
2 are the (real parts of the) Kähler moduli. From (2.2) one can, using the

supersymmetry condition (see below), derive the dependence of the tree-level gauge kinetic

function on the untwisted moduli [24]:

f̂tree = Scn1n2n3 −
3∑

i6=j 6=k=1

U c
i nim̃jm̃k . (2.3)

Sc and U c
i are the complexified dilaton and complex structure moduli, the axions being

RR-fields. Similarly, T c
i are complexified Kähler moduli, the axions stemming from the

NSNS 2-form-field.

The D-brane is rotated by the angles θi, defined via tan θi = m̃iR
(i)
2 /niR

(i)
1 , with re-

spect to the x-axes of the three tori. Only supersymmetric configurations will be considered

in this paper, i.e.
∑3

i=1 θi = 0.2

The charges of the four orientifold planes are denoted ηΩR and ηΩRi, i ∈ {1, 2, 3} and

have to satisfy

ηΩR

3∏

i=1

ηΩRi = −1 (2.4)

in the present case of the Z2 × Z
′
2 orbifold with h21 = 51 [16]. The tadpole cancellation

conditions are given by
∑

a

Nan
1
an

2
an

3
a = 16ηΩR (2.5)

∑

a

Nan
i
am̃

j
am̃

k
a = −24−2βj−2βk

ηΩRi i 6= j 6= k ∈ {1, 2, 3} (2.6)

∑

a

Nan
i
a(ǫ

i
a,kl − ηΩRηΩRiǫ

i
a,R(k)R(l)) = 0 (2.7)

∑

a

Nam̃
i
a(ǫ

i
a,kl + ηΩRηΩRiǫ

i
a,R(k)R(l)) = 0, (2.8)

where R(k) = k in case of an untilted torus and R({1, 2, 3, 4}) = {1, 2, 4, 3} in the other

case [16] and the sum is a sum over all stacks of branes. Na denotes the number of branes

on stack a. The wrapping numbers and twisted charges carry an index a denoting the

brane stack which they describe. The orientifold projection acts on the wrapping numbers

and twisted charges as follows:

m̃I → −m̃I (2.9)

ǫi
kl → −ηΩRηΩRiǫ

i
R(k)R(l) . (2.10)

2Branes at angles θ
i satisfying

P3
i=1 θ

i = ±2π are also supersymmetric, but are, for simplicity, not

considered here.

– 4 –



J
H
E
P
1
2
(
2
0
0
7
)
0
7
2

The massless open string spectrum can be read of from the open string partition

function given by annulus (and Möbius) amplitudes without any vertex operators inserted.

These can be calculated from boundary (and crosscap) states describing the D-branes (and

O-planes) [25 – 31]. Only the annulus amplitudes will be given here, and four cases will be

distinguished (These are not all possibilities there are, but all needed here.), that will also

be important in the rest of this paper:

Case 1. The annulus has both boundaries on the same stack of branes a. The amplitude is

A(1)
aa = −N2

a

∫ ∞

0
dl

[
ϑ4

3 − ϑ4
4 − ϑ4

2 + ϑ4
1

η12

3∏

i=1

(V i
a )2

R
(i)
1 R

(i)
2

L̃(i)
aa

+16

3∑

i=1

σi
aa

ϑ2
3ϑ

2
2 − ϑ2

4ϑ
2
1 − ϑ2

2ϑ
2
3 + ϑ2

1ϑ
2
4

η6ϑ2
4

(V i
a )2

R
(i)
1 R

(i)
2

L̃(i)
aa

]
, (2.11)

where σi
ab = 1

4

∑4
k,l=1 ǫi

a,klǫ
i
b,kl, ϑ = ϑ(0, 2il), η = η(2il) and V i

a , defined in (2.1), now

carries an index a to denote the brane stack considered. The following Kaluza-Klein and

winding sum has been defined [32]:

L̃
(i)
ab =

∑

m,w

exp

[
−πl(V i

a )2

(
m2

(R
(i)
1 R

(i)
2 )2

+ w2

)
+ iπm(δi

a − δi
b) + iπw(λi

a − λi
b)

]

Case 2. The annulus stretches between two stacks of D-branes a and b wrapping the same

submanifold of the covering six-torus of the internal space and having the same discrete

Wilson lines turned on(λi
a = λi

b). This means in particular θi
a = θi

b,V
i
a = V i

b , δi
a = δi

b,

however not all twisted charges ǫi are equal.

One can show that in this case σi
ab = ±1. The amplitude is

A(2)
ab = −NaNb

∫ ∞

0
dl

[
ϑ4

3 − ϑ4
4 − ϑ4

2 + ϑ4
1

η12

3∏

i=1

(V i
a )2

R
(i)
1 R

(i)
2

L̃
(i)
ab

+16

3∑

i=1

σi
ab

ϑ2
3ϑ

2
2 − ϑ2

4ϑ
2
1 − ϑ2

2ϑ
2
3 + ϑ2

1ϑ
2
4

η6ϑ2
4

(V i
a)2

R
(i)
1 R

(i)
2

L̃
(i)
ab

]
. (2.12)

Case 3. The two stacks of branes wrap submanifolds that are homologically equal on the

covering torus (This implies θi
a = θi

b,V
i
a = V i

b .), but do not satisfy λi
a = λi

b, δi
a = δi

b for all

i. The amplitude looks as the one of case 2.

Case 4. The annulus stretches between two branes that intersect at non-trivial angles

on all three tori. The amplitude reads

A(4)
ab = NaNb

∫ ∞

0
dl

[
8
(∏3

i=1 Ii
ab

)∑

α,β

(−1)2(α+β)
ϑ
[α
β

]
(0)

η3

3∏

i=1

ϑ
[α
β

]
(θi

ab)

ϑ
[1/2
1/2

]
(θi

ab)
(2.13)

+32
∑

i6=j 6=k

Ii
ab σi

ab

∑

α,β

(−1)2(α+β)
ϑ
[α
β

]
(0)

η3

ϑ
[α
β

]
(θi

ab)

ϑ
[1/2
1/2

]
(θi

ab)

ϑ
[|α−1/2|

β

]
(θj

ab)

ϑ
[

0
1/2

]
(θj

ab)

ϑ
[|α−1/2|

β

]
(θk

ab)

ϑ
[

0
1/2

]
(θk

ab)

]
,
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where θi
ab = θi

a − θi
b and the intersection number Ii

ab = (m̃i
an

i
b − m̃i

bn
i
a) were defined.

Upon transforming into the open string channel, one finds the following massless spec-

trum: Case 1 yields a massless vector multiplet in the adjoint representation of U(Na). Case

2 gives a massless hypermultiplet in the bifundamental representation of U(Na)×U(Nb). In

case 3 there are no massless fields. In case 4 one finds |Υab|, Υab = 1
4

∏3
i=1 Ii

ab+
∑3

i=1 Ii
abσ

i
ab,

chiral multiplets in the bifundamental representation of U(Na) × U(Nb).

3. Gauge threshold corrections

The gauge threshold corrections will be computed using the background field method em-

ployed previously [33, 34, 11]. This means that the one-loop correction to the gauge

coupling of brane a induced by brane b is determined as follows. First, one replaces the 4d

spacetime part of the partition function in the above expression as follows [11]:

ϑ
[
α
β

]
(0, 2il)

η3(2il)
→ 2iπBqa

ϑ
[
α
β

]
(−ǫa, 2il)

ϑ
[1/2
1/2

]
(−ǫa, 2il)

, (3.1)

where πǫa = arctan(πqaB), qa is the charge of the open string ending on brane a and B

is the background magnetic field in the 4d spacetime. One then expands the resulting

expressions in a series in B and the coefficient of B2 gives the desired expression for the

correction to the gauge coupling, which needs to be evaluated further.

For the four cases distinguished above one finds, denoting the amplitudes after the

manipulations described with an additional superscript g:

Ag(1)
aa = 32π N2

a

∫ ∞

0
dl

3∑

i=1

σi
aa

(V i
a )2

R
(i)
1 R

(i)
2

L̃(i)
aa (3.2)

Ag(2)
ab = 32π NaNb

∫ ∞

0
dl

3∑

i=1

σi
ab

(V i
a )2

R
(i)
1 R

(i)
2

L̃
(i)
ab (3.3)

Ag(3)
ab = 32π NaNb

∫ ∞

0
dl

3∑

i=1

σi
ab

(V i
a )2

R
(i)
1 R

(i)
2

L̃
(i)
ab (3.4)

Ag(4)
ab = NaNb

∫ ∞

0
dl

[
8
(∏3

i=1 Ii
ab

) 3∑

i=1

ϑ′
1(θ

i
ab, 2il)

ϑ1(θi
ab, 2il)

+
∑

i6=j 6=k

32Ii
ab σi

ab

(
ϑ′

1(θ
i
ab, 2il)

ϑ1(θi
ab, 2il)

+
ϑ′

4(θ
j
ab, 2il)

ϑ4(θ
j
ab, 2il)

+
ϑ′

4(θ
k
ab, 2il)

ϑ4(θk
ab, 2il)

)]
. (3.5)

The overall normalisation will later be fixed by demanding the running of the gauge cou-

pling with the correct beta function coefficient, but the relative normalisation is taken into

account correctly. The full correction to the gauge coupling on brane a is given by summing

over all annuli (and Möbii) with at least one boundary on brane a.

– 6 –
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The above expressions can be evaluated analogously to the corresponding ones in the

Z2 × Z2 orbifold with h21 = 3 [11, 12]. The results are:

Ag(1)
aa = 32π N2

a

∫ ∞

0
dl

3∑

i=1

σi
aa

(V i
a )2

R
(i)
1 R

(i)
2

(3.6)

+32π N2
a

(
σaa ln

[
M2

s

µ2

]
−

3∑

i=1

σi
aa ln

[
(V i

a )2
]
)

(3.7)

−32π N2
a

3∑

i=1

4σi
aa ln

[
η(iR

(i)
1 R

(i)
2 )

]
(3.8)

−32π N2
aσaa ln[4π] . (3.9)

Here, σab =
∑3

i=1 σi
ab was defined and the divergence

∫ ∞ dt
t arising from the massless open

string modes was replaced by ln
[
M2

s /µ2
]

[12]. For the cases 2 and 3 we obtain

Ag(2)
ab = 32π NaNb

∫ ∞

0
dl

3∑

i=1

σi
ab

(V i
a )2

R
(i)
1 R

(i)
2

(3.10)

+32π NaNb

3∑

i=1

σi
ab

(
ln

[
M2

s

µ2

]
− ln

[
(V i

a )2
]
− 4 ln

[
η(iR

(i)
1 R

(i)
2 )

])

(3.11)

−32πNaNbσab ln[4π] (3.12)

Ag(3)
ab = 32πNaNb

∫ ∞

0
dl

3∑

i=1

σi
ab

(V i
a )2

R
(i)
1 R

(i)
2

(3.13)

−64πNaNb

3∑

i=1

σi
ab ln




ϑ
[1/2(1−|δi

a−δi
b
|)

1/2(1−|λi
a−λi

b
|)

]
(0, iR

(i)
1 R

(i)
2 )

η(iR
(i)
1 R

(i)
2 )


 . (3.14)

Note that in case 2 there is again a divergence proportional to
∫ ∞ dt

t , which was replaced

by ln[M2
s /µ2], whereas there is none in case 3 due to the absence of massless modes in this

sector. Finally, for case 4 the thresholds are

Ag(4)
ab = NaNb

∫ ∞

0
dl 8

(∏3
i=1 Ii

ab

) 3∑

i=1

π cot
[
πθi

ab

]
(3.15)

+NaNb

∫ ∞

0
dl

3∑

i=1

32 Ii
ab σi

ab π cot
[
πθi

ab

]
(3.16)

+16π NaNbΥab

3∑

i=1

(
si
ab ln

[
M2

s

µ2

]
+ ln

[
Γ(1 − |θi

ab|)
Γ(|θi

ab|)

]si
ab

)
(3.17)

+64π NaNb ln[2]
∑

i

Ii
ab (θi

a − θi
b)σi

ab (3.18)

+16πNaNb


(ln[2] − γE)Υab

∑

i

si
ab + ln[4]

∑

i6=j 6=k

Ii
abσ

i
ab(s

j
ab + sk

ab)


 , (3.19)
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where the abbreviation si
ab = sign(θi

ab) was used.

The contributions (3.9), (3.12) and (3.19) are just moduli independent, finite constants

and as such of no further interest. The terms in (3.6), (3.10), (3.13), (3.15) and (3.16) are

divergent integrals and the sum over these contributions from all annuli has to cancel. The

expression (3.15) also appears in the model on the orbifold with h21 = 3 and the sum can

be shown to vanish upon using the untwisted tadpole cancellation conditions [11].3

Using (V i
a)2 = (ni

a)
2(R

(i)
1 )2 + (m̃i

a)
2(R

(i)
2 )2, tan θi

a = m̃i
aR

(i)
2 /ni

aR
(i)
1 as well as the fact

that in cases 1 and 2 (ni
a, m̃

i
a) = (ni

b, m̃
i
b) the three terms (3.6), (3.10), (3.13) and (3.16)

can all be brought into the form4

ATT
ab = 8πNaNb

∫ ∞

0
dl

3∑

i=1

4∑

k,l=1

ǫi
a,klǫ

i
b,kl

ni
an

i
b(R

(i)
1 )2 + m̃i

am̃
i
b(R

(i)
2 )2

R
(i)
1 R

(i)
2

, (3.20)

where the superscript TT denotes that these are the contributions from (3.2), (3.3), (3.4)

and (3.5) that vanish after using the twisted tadpole cancellation conditions. Summing over

this contribution from all annuli yields (denoting the orientifold image of brane b by b′)
∑

b6=a

(ATT
ab + ATT

ab′ ) + ATT
aa′ (3.21)

= Na

∑

i

ni
a

R
(i)
1 R

(i)
2

∑

k,l

ǫi
a,kl

[
(R

(i)
1 )2

∑

b

Nbn
i
b(ǫ

i
b,kl − ηΩRηΩRiǫ

i
b,R(k)R(l))

]

+Na

∑

i

m̃i
a

R
(i)
1 R

(i)
2

∑

k,l

ǫi
a,kl

[
(R

(i)
2 )2

∑

b

Nbm̃
i
b(ǫ

i
b,kl + ηΩRηΩRiǫ

i
b,R(k)R(l))

]
,

which vanishes upon using the twisted tadpole conditions (2.7) and (2.8). The other con-

tributions to the gauge coupling corrections will be discussed in the next sections.

4. Holomorphic gauge kinetic function

In a supersymmetric gauge theory one can compute the running gauge couplings ga(µ
2) in

terms of the gauge kinetic functions fa, the Kähler potential K and the Kähler metrics of

the charged matter fields Kab(µ2) [35, 36, 21]:

8π2

g2
a(µ

2)
= 8π2 ℜ(fa) + ∆0 +

∑

r

∆r (4.1)

with

∆0 = T (Ga)

(
−3

2
ln

[
Λ2

µ2

]
− 1

2
K + ln

[
1

g2
a(µ

2)

])
(4.2)

∆r = Ta(r)

(
nr

2
ln

[
Λ2

µ2

]
+

nr

2
K − ln

[
det Kr(µ

2)
])

(4.3)

3For this to happen, the Möbius amplitudes have to be taken into account as well, but they are unchanged

as the orientifold planes do not carry twisted charges.
4Note that due to the above choice of signs for n

1,2, m
1,2 and the supersymmetry condition, not only

the absolute values but also the signs of the wrapping numbers are equal.
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and Ta(r) = Tr(T 2
(a)) (T(a) being the generators of the gauge group Ga). In addition,

T (Ga) = Ta(adj Ga) and nr is the number of multiplets in the representation r of the

gauge group and the sum in (4.1) runs over these representations. For this paper only

the gauge groups SU(Na) and its fundamental, adjoint, symmetric and antisymmetric

representations (r = f, adj, s, a) are relevant. For these T (Ga) = Ta(adj) = Na, Ta(f) =

1/2, Ta(s) = (Na + 2)/2 and Ta(a) = (Na − 2)/2. In this context, the natural cutoff scale

for a field theory is the Planck scale, i.e. Λ2 = M2
Pl.

The stringy one-loop correction to the l.h.s. of (4.1) was calculated in the previous sec-

tion. As, in a supersymmetric theory, fa is a holomorphic function of the chiral superfields,

the non-holomorphic terms on the l.h.s. of (4.1) better be equal to the non-holomorphic

terms in ∆0 and ∆r. It will be shown that this is actually the case for the model under

consideration, apart from some universal threshold corrections [19 – 21, 8] to be discussed

in the next section.

∆0 must match the contribution of the annulus Ag(1)
aa to the l.h.s. of (4.1). On the

orbifold with h21 = 3, the latter vanishes [11] and the terms on the r.h.s. cancel amongst

each other [8]. In the present case, things are a little bit different. There are no chiral

multiplets in the adjoint of the gauge group such that, using K = − ln(SU1U2U3T1T2T3),

M2
Pl ∝ M2

s

√
SU1U2U3 and (2.2), the one loop contribution in ∆0 becomes

∆0

T (Ga)
= −3

2
ln

[
M2

Pl

µ2

]
− 1

2
K + ln

[
1

g2
a,tree

]
= −3

2
ln

[
M2

s

µ2

]
+ ln

[
∏

i

V i
a

]
. (4.4)

The r.h.s. of (4.4) matches (up to the overall normalisation, the relative normalisation

of the two terms is however correct) precisely the terms (3.7). The term (3.8) has no

corresponding one on the r.h.s. of (4.1), but upon complexifying the Kähler moduli Ti →
T c

i (the axions stem from the NSNS 2-form-field) it can be analytically continued to a

holomorphic function of the complex Kähler moduli. One is thus lead to conclude that

there is a one-loop correction to the gauge kinetic function of the form

δaf
1−loop
a =

Na

4π2

3∑

i=1

ln [η(iT c
i )] , (4.5)

especially as there is a very similar correction in the case of the Z2 × Z2 orbifold with

h21 = 3 arising there from a different open string sector [8]. The normalisation of the term

on the r.h.s. of (4.5) is determined from the relative normalisation of the different terms

in (4.1) and (3.6), (3.7), (3.8), (3.9).

Next, the contributions in case 2 will be discussed. Note that in this case |σi
ab| =

|σab| = 1. The terms in (3.11) give a contribution to the l.h.s. of (4.1) proportional to

A′g(2)
ab = 32πNaNbσab

(
ln

[
M2

s

µ2

]
− 2σab ln

[
3∏

i=1

(V i
a )σ

i
ab

]
− 4σab

3∑

i=1

σi
ab ln [η(iTi)]

)
. (4.6)

where the prime on A′g(2)
ab denotes that the tadpole and constant contributions have been

subtracted.
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This is to be compared (up to the overall normalisation) with the contribution of

nf = 2Nb multiplets in the fundamental representation (Ta(f) = 1/2) of the gauge group

to the r.h.s. of (4.1):

∆f =
2Nb

4

(
ln

[
M2

s

µ2

]
− 2 ln

[
Kf (SU1U2U3)

1
4 (T1T2T3)

1
2

])
. (4.7)

One concludes that the Kähler metric for the two chiral multiplets in this sector is

KV
f = (SU1U2U3)

− 1
4 (T1T2T3)

− 1
2

(
3∏

i=1

(V i
a )σ

i
ab

) 1
σab

, (4.8)

and that there is the following one-loop correction to the gauge kinetic function:

δb(2)f
1−loop
a = − 1

4π2

∑

b

Nb σab

3∑

i=1

σi
ab ln [η(iT c

i )] . (4.9)

The normalisation of the terms on the r.h.s. of (4.9) is determined from the relative nor-

malisation of the different terms in (4.1) and (4.6). There is an overall minus sign in (4.9)

as compared to (4.5) which essentially comes from the fact that the gauge multiplet itself

contributes with a different sign to the beta function than chiral multiplets. Upon changing

variables, the Kähler metric (4.8) is identical to the one for adjoint fields in the model with

h21 = 3 [24, 5] as one would expect from the fact that these fields are described by the

same vertex operators in the worldsheet CFT.

The contribution from case 3 to the l.h.s. of (4.1) is finite after using the tadpole

cancellation condition as one would expect from the fact that there are no massless open

string states in this sector. One concludes that the term (3.14) leads to the following

correction to the gauge kinetic function:

δb(3)f
1−loop
a = − 1

8π2

∑

b

Nb

σab

3∑

i=1

σi
ab ln




ϑ
[1/2(1−|δi

a−δi
b
|)

1/2(1−|λi
a−λi

b
|)

]
(0, iT c

i )

η(iT c
i )


 (4.10)

Finally, there is the sector yielding the chiral bifundamentals (case 4). The terms in (3.17)

contribute

A′g(4)
ab = 16πNaNbΥab

∑

i

sign(θi
ab)

(
ln

[
M2

s

µ2

]

+
1

∑
j sign(θj

ab)
ln

[
3∏

k=1

(
Γ(1 − |θk

ab|)
Γ(|θk

ab|)

)sign(θk
ab

)
])

, (4.11)

where the prime in A′g(4)
ab denotes omission of the tadpole and constant contributions

and those from (3.18), to the l.h.s. of (4.1). An equal contribution (up to the overall

normalisation) to the r.h.s. results, if the Kähler metric for the chiral bifundamentals is:

K
C(1)
f,ab = (SU1U2U3)

− 1
4 (T1T2T3)

− 1
2

[
3∏

i=1

(
Γ(1 − |θi

ab|)
Γ(|θi

ab|)

)sign(θi
ab

)
]−1/[2

P

j sign(θj

ab
)]

. (4.12)
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Note that this agrees with the result obtained in the case with h21 = 3 [8], it is however

more general in that it allows for arbitrary signs of θj
ab.

5. Universal gauge coupling corrections

At first sight it might seem that holomorphy implies that the exact Kähler metric for the

chiral bifundamentals is given by (4.12). However, this is not true. As in the case of the

Z2 × Z2 orbifold with h21 = 3 [8], an additional factor is allowed if, at the same time, the

dilaton and complex structure moduli are redefined at one-loop. This redefinition is related

to sigma-model anomalies in the low energy supergravity theory [19, 20].

The factor takes the form [5, 24, 8]

K
C(2)
f,ab =

3∏

i=1

U
−ξ sign(Υab)θ

i
ab

i T
−ζ sign(Υab)θ

i
ab

i , (5.1)

where ξ and ζ are undetermined constants. Upon summing over all chiral matter charged

under U(Na) and using both the twisted and untwisted tadpole cancellation conditions,

this term leads to the following contribution to the r.h.s. of (4.1) [8]:

−
∑

b

′
Ta(f)

(
ln detK

C(2)
f,ab + ln det K

C(2)
f,ab′

)
− Ta(a) ln detK

C(2)
f,aa′ − Ta(s) ln detK

C(2)
f,aa′

= −1

4
n1

an
2
an

3
a

[
∑

b

Nbm̃
1
bm̃

2
bm̃

3
b

3∑

l=1

θl
b (ξ ln Ul + ζ ln Tl)

]

−1

4

3∑

i6=j 6=k=1

ni
am̃

j
am̃

k
a

[
∑

b

Nbm̃
i
bn

j
bn

k
b

3∑

l=1

θl
b (ξ ln Ul + ζ lnTl)

]

−1

8

∑

i;k,l

ni
aǫ

i
a,kl

∑

b

Nbm̃
i
b

(
ǫi
b,kl − ηΩRηΩRiǫ

i
b,R(k)R(l)

)∑

j

θj
b(ξ ln Uj + ζ ln Tj)

+
1

8

∑

i;k,l

m̃i
aǫ

i
a,kl

∑

b

Nbn
i
b

(
ǫi
b,kl + ηΩRηΩRiǫ

i
b,R(k)R(l)

)∑

j

θj
b(ξ ln Uj + ζ ln Tj) . (5.2)

The prime on the first sum indicates that it only runs over branes b that intersect brane a

at generic angles on all three tori.

The first two terms on the r.h.s. of (5.2) are cancelled by the correction arising from

the tree-level gauge kinetic function on the r.h.s. of (4.1) upon redefining the dilaton and

complex structure moduli as follows:

S → S − 1

32π2

∑

b

Nbm̃
1
bm̃

2
bm̃

3
b

(
∑

l

θl
b(ξ ln Ul + ζ ln Tl)

)
(5.3)

Ui → Ui +
1

32π2

∑

b

Nbm̃
i
bn

j
bn

k
b

(
∑

l

θl
b(ξ ln Ul + ζ ln Tl)

)
(5.4)

In order to interpret the last two terms in (5.2) one notices that the tree-level gauge kinetic

function, in addition to the dependence on untwisted moduli given in (2.3), depends also
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on the twisted moduli. An anomaly analysis, sketched in the appendix, suggests that the

full tree-level gauge kinetic function is

fa,tree = Sc
3∏

i=1

ni
a −

3∑

i6=j 6=k=1

U c
i ni

am̃
j
am̃

k
a +

3∑

i=1

4∑

k,l=1

ni
a

(
ǫi
a,kl

−ηΩRηΩRiǫ
i
a,R(k)R(l)

)
W c

ikl + m̃i
a

(
ǫi
a,kl + ηΩRηΩRiǫ

i
a,R(k)R(l)

)
W̃ c

ikl, (5.5)

where W c
ikl and W̃ c

ikl, i ∈ {1, 2, 3}, k, l ∈ {1, 2, 3, 4} are twisted sector fields. There are h21

hypermultiplets coming from the closed string sector in the spectrum of type IIA string

theory on a Calabi-Yau space. In the present case, h21 = huntwisted
21 + htwisted

21 acquires

contributions from untwisted (huntwisted
21 = 3) and twisted (htwisted

21 = 48) sectors. W c
ikl and

W̃ c
ikl are the 2htwisted

21 = 96 complex scalars arising from the sixteen fixed points, labelled

by kl, in each of the three twisted sectors, labelled by i. The real parts of W c
ikl and W̃ c

ikl

are NSNS-sector fields and the axions are RR-fields.

The twisted moduli can also lead to sigma model anomalies in the low energy super-

gravity theory and can therefore mix with the dilaton and the other complex structure

moduli. One is thus lead to conclude that the twisted moduli are shifted by

δ(1)Wikl = − 1

64π2

∑

b

Nbm̃
i
bǫ

i
b,kl

∑

j

θj
b(ξ ln Uj + ζ ln Tj) (5.6)

and

δ(1)W̃ikl =
1

64π2

∑

b

Nbn
i
bǫ

i
b,kl

∑

j

θj
b(ξ ln Uj + ζ ln Tj), (5.7)

respectively, such that the last two terms in (5.2) cancel.

One comment on (5.1) is in order. From the worldsheet conformal field theory point of

view it is clear that the Kähler metrics for the chiral matter arising at a brane intersection

should be the same on the orbifolds with h21 = 51 and h21 = 3. At first sight it might seem

that (5.1) differs from the corresponding expression for the other orbifold [8] in that the

latter has sign(
∏

i I
i
ab) in the exponent rather than sign(Υab) as in (5.1). There is, however,

a physical argument that shows that these signs must be equal. The orbifold projection

removes some of the string states, but it cannot change their spacetime chirality. As the

aforementioned signs determine the spacetime chirality, they must be equal.

There is one term (3.18) in the gauge threshold corrections that has so far been ne-

glected. Upon summing over all annuli with one boundary on brane stack a and using the

tadpole cancellation condition it can be cast into

∑

i

∑

k,l


∑

b6=a

NbI
i
abǫ

i
a,klǫ

i
b,kl(θ

i
a − θi

b) +
∑

b

NbI
i
ab′ǫ

i
a,klǫ

i
b′,kl(θ

i
a − θi

b′)




=
∑

i

∑

k,l

naǫ
i
a,kl

∑

b

Nbm̃
i
bθ

i
b(−ǫi

b,kl + ηΩRηΩRiǫ
i
b,R(k)R(l))

+
∑

i

∑

k,l

m̃i
aǫ

i
a,kl

∑

b

Nbn
i
bθ

i
b(ǫ

i
b,kl + ηΩRηΩRiǫ

i
b,R(k)R(l)), (5.8)
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where it was used that Ii
ab′ = −(ni

am̃
i
b + m̃i

an
i
b), ǫi

b′,kl = −ηΩRηΩRiǫ
i
b,R(k)R(l) and θi

b′ = −θi
b.

This term resembles the last two terms in (5.2). One would therefore like to conjecture

that this term is also cancelled by a redefinition of the twisted moduli. In particular, the

shifts would have to be

δ(2)Wikl = − 1

32π2

∑

b

Nbm̃
i
bǫ

i
b,klθ

i
b ln[2]

δ(2)W̃ikl =
1

32π2

∑

b

Nbn
i
bǫ

i
b,klθ

j
b ln[2] (5.9)

Taking into account both the contributions (5.6)/(5.7) and (5.9) the real parts of the

twisted moduli acquire the redefinition (6.1). Note here that
∑

k,l

ǫi
a,kl(ǫ

i
b,kl ± ηΩRηΩRiǫ

i
b,R(k)R(l)) =

∑

k,l

ǫi
b,kl(ǫ

i
a,kl ± ηΩRηΩRiǫ

i
a,R(k)R(l)). (5.10)

6. Summary of results

Eventually, even for the danger of repeating ourselves, let us summarise the main results of

this paper. The gauge threshold corrections for intersecting D6-brane models on the Z2×Z
′
2

orbifold with h21 = 51, which allows for rigid three-cycles, were computed. It was shown

that the results fulfil the non-trivial condition that, in a supersymmetric theory, the gauge

kinetic function must be a holomorphic function of the chiral superfields. Let us emphasise

that this is important because it shows that the D-instanton generated couplings can be

incorporated in a holomorphic superpotential [8]. For it to be true, a mixing between the

complex structure moduli of the twisted and untwisted sectors must take place at one loop.

In particular, the twisted complex structure moduli are redefined as

Wikl → Wikl −
1

64π2

∑

b

Nbm̃
i
bǫ

i
b,kl

∑

j

θj
b (ξ ln Uj + ζ ln Tj + ln[4] δij)

W̃ikl → W̃ikl +
1

64π2

∑

b

Nbn
i
bǫ

i
b,kl

∑

j

θj
b (ξ ln Uj + ζ ln Tj + ln[4] δij) . (6.1)

In contrast to the Z2 × Z2 orbifold with h21 = 3, the gauge kinetic function does in the

present case receive one-loop corrections from sectors preserving N = 1 supersymmetry.

Upon summing over all contributions, one finds that the one-loop correction to the gauge

kinetic function for the gauge theory on brane stack a is

f1−loop
a =

1

4π

3∑

i=1

ln [η(iT c
i )] − 1

4π2

∑

b ∈ case 2

Nb

σab

3∑

i=1

σi
ab ln [η(iT c

i )]

− 1

8π2

∑

b ∈ case 3

Nb

σab

3∑

i=1

σi
ab ln




ϑ
[1/2(1−|δi

a−δi
b
|)

1/2(1−|λi
a−λi

b
|)

]
(0, iT c

i )

η(iT c
i )


 . (6.2)

The Kähler metric for the vector-like bifundamental matter arising from strings stretched

between two stacks of branes that are coincident but differ in their twisted charges was,
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using holomorphy arguments, determined to be

KV
f = (SU1U2U3)

− 1
4 (T1T2T3)

− 1
2

(
3∏

i=1

(V i
a )σ

i
ab

) 1
σab

. (6.3)

Equivalently one can determine the Kähler metric for the chiral bifundamental matter

arising at the intersection of two stacks of branes to be

KC
f,ab = K

C(1)
f,ab K

C(2)
f,ab

= S− 1
4

3∏

i=1

U
−1/4−ξ sign(Υab)θ

i
ab

i T
−1/2−ζ sign(Υab)θ

i
ab

i ×

[
3∏

i=1

(
Γ(1 − |θi

ab|)
Γ(|θi

ab|)

)sign(θi
ab

)
]−1/[2

P

j sign(θj

ab
)]

, (6.4)

where ξ and ζ are undetermined constants. It was argued [8] that they should be ξ = 0

and ζ = ±1/2. These values do however not follow from the calculations performed in this

paper.

As already discussed in the introduction, the results of this paper are important for the

study of E2-instantons on the background considered, as the one-loop amplitudes computed

here are equal to one-loop amplitudes in the instanton background. They are therefore

important ingredients when, e.g., neutrino Majorana masses [18, 22] or moduli stabilisation

are studied [23].
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A. Anomaly analysis

Models on the background considered in this paper and described in the main text do gener-

ically have an anomalous spectrum. The anomalies are however cancelled by a generalised

Green-Schwarz mechanism [37].

In the following the U(1)a − SU(Nb)
2 anomalies will be considered and it will be

assumed that brane stacks a and b are an example of what was called case 4 in the main

text.
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Oriented case. It is convenient to start with the case in which there is no orientifold

plane. The anomaly coefficient arising from the chiral multiplets can be computed to be [4]

−NaΥab =
Na

4


n1

bn
2
bn

3
bm̃

1
am̃

2
am̃

3
a +

3∑

i6=j 6=k=1

ni
bm̃

j
bm̃

k
bm̃

i
an

j
an

k
a

−
3∑

i6=j 6=k=1

m̃i
bn

j
bn

k
bn

i
am̃

j
am̃

k
a − m̃1

bm̃
2
bm̃

3
bn

1
an

2
an

3
a

−
∑

i

∑

k,l

m̃i
bǫ

i
b,kln

i
aǫ

i
a,kl +

∑

i

∑

k,l

ni
bǫ

i
b,klm̃

i
aǫ

i
a,kl


 . (A.1)

The following terms arise from the Chern-Simons actions for the brane stacks a and b

SCS
b ⊃

∫
tr(Fb ∧ Fb)

[
n1

bn
2
bn

3
b A

(0)
0 +

3∑

i6=j 6=k=1

ni
bm̃

j
bm̃

k
b A

(0)
i

+

3∑

i6=j 6=k=1

m̃i
bn

j
bn

k
b Ã

(0)
i + m̃1

bm̃
2
bm̃

3
b Ã

(0)
0

]
(A.2)

SCS
a ⊃ Na

∫
Fa ∧

[
− n1

an
2
an

3
a Ã

(2)
0 −

3∑

i6=j 6=k=1

ni
am̃

j
am̃

k
a Ã

(2)
i

+

3∑

i6=j 6=k=1

m̃i
an

j
an

k
a A

(2)
i + m̃1

am̃
2
am̃

3
a A

(2)
0

]
(A.3)

and lead to a cancellation of the anomalies described by the first eight summands in (A.1).

Fa is the U(1)a field strength and Fb the SU(Nb) field strength. A
(0)
0,i , Ã

(0)
0,i are axions arising

from untwisted RR fields and A
(2)
0,i , Ã

(2)
0,i their 4d dual two-forms.

The remaining anomalies are cancelled if the following couplings of the twisted RR

fields to the gauge fields arise in the low energy effective action [38, 39]:

ŜCS
b =

∫
tr(Fb ∧ Fb)

[
ni

bǫ
i
b,kl A

(0)
ikl + m̃i

bǫ
i
b,kl Ã

(0)
ikl

]
(A.4)

ŜCS
a = Na

∫
Fa ∧

[
− ni

aǫ
i
a,kl Ã

(2)
ikl + m̃i

aǫ
i
a,kl A

(2)
ikl

]
(A.5)

Here, A
(0)
ikl and Ã

(0)
ikl are axions arising from the twisted RR sectors and A

(2)
ikl , Ã

(2)
ikl their 4d

dual two-forms.

Unoriented case. Things are quite similar to the oriented case, but the orientifold

images have to be taken into account and some of the axions are projected out of the
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spectrum. The anomaly coefficient becomes

Na

2
(−Υab + Υa′b) =

Na

4


n1

bn
2
bn

3
bm̃

1
am̃

2
am̃

3
a +

3∑

i6=j 6=k=1

ni
bm̃

j
bm̃

k
b m̃

i
an

j
an

k
a

+
1

2

∑

i

∑

k,l

m̃i
bǫ

i
b,kln

i
a(−ǫi

a,kl − ηΩRηΩRiǫ
i
a,R(k)R(l))

+
1

2

∑

i

∑

k,l

ni
bǫ

i
b,klm̃

i
a(ǫ

i
a,kl − ηΩRηΩRiǫ

i
a,R(k)R(l))


 (A.6)

and the Chern-Simons actions yield

SCS
b ⊃

∫
tr(Fb ∧ Fb)

[
n1

bn
2
bn

3
b A

(0)
0 +

3∑

i6=j 6=k=1

ni
bm̃

j
bm̃

k
b A

(0)
i

]
(A.7)

SCS
a ⊃ Na

∫
Fa ∧

[
3∑

i6=j 6=k=1

m̃i
an

j
an

k
a A

(2)
i + m̃1

am̃
2
am̃

3
a A

(2)
0

]
(A.8)

to cancel the anomalies related to the first four summands in (A.6). Note that Ã0,i is

projected out, whereas A0,i remains in the spectrum. Full anomaly cancellation occurs if

the couplings

ŜCS
b =

∫
tr(Fb ∧ Fb)

[
ni

b(ǫ
i
b,kl − ηΩRηΩRiǫ

i
b,R(k)R(l))A

(0)
ikl

+m̃i
b(ǫ

i
b,kl + ηΩRηΩRiǫ

i
b,R(k)R(l))Ã

(0)
ikl

]
(A.9)

=

∫
tr(Fb ∧ Fb)

[
ni

b

2
(ǫi

b,kl − ηΩRηΩRiǫ
i
b,R(k)R(l))(A

(0)
ikl − ηΩRηΩRiA

(0)
iR(k)R(l))

+
m̃i

b

2
(ǫi

b,kl + ηΩRηΩRiǫ
i
b,R(k)R(l))(Ã

(0)
ikl + ηΩRηΩRiÃ

(0)
iR(k)R(l))

]
(A.10)

and

ŜCS
a = Na

∫
Fa ∧

[
ni

a(−ǫi
a,kl − ηΩRηΩRiǫ

i
a,R(k)R(l))Ã

(2)
ikl

+m̃i
a(ǫ

i
a,kl − ηΩRηΩRiǫ

i
a,R(k)R(l))A

(2)
ikl

]
(A.11)

= Na

∫
Fa ∧

[
ni

a

2
(−ǫi

a,kl − ηΩRηΩRiǫ
i
a,R(k)R(l))(Ã

(2)
ikl − ηΩRηΩRiÃ

(2)
iR(k)R(l))

+
m̃i

a

2
(ǫi

a,kl − ηΩRηΩRiǫ
i
a,R(k)R(l))(A

(2)
ikl − ηΩRηΩRiA

(2)
iR(k)R(l))

]
(A.12)
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are present in the effective action. Note that from (A.10) and (A.12) one can infer which

linear combinations of Aikl and Ãikl are projected out. To be precise, those ones that do

not appear in (A.10) and (A.12) are projected out. (A.9) leads one to conclude that the

combinations W c
ikl = Wikl + iA

(0)
ikl and W̃ c

ikl = W̃ikl + iÃ
(0)
ikl (or rather some linear combina-

tions thereof) are the appropriate complex scalars of the chiral multiplets in the low energy

effective action and that the holomorphic gauge kinetic function is indeed given by (5.5).
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